1439 Development of a complex skin organ in human induced pluripotent stem cell-derived organoids

نویسندگان

چکیده

A large amount of research has been devoted to developing skin organs for studying developmental pathways, modeling diseases, or regenerative medicine purposes. However, the field is still far from fulfilling its dream creating appendages, such as hair follicles and sweat glands. This challenge could be addressed with use human induced pluripotent stem cells (hiPSCs). Nevertheless, current hiPSC-derived substitutes lack nerves, fat which are critical function aesthetics. Here, we establish protocols engineering stratified layers their appendages using hiPSCs-derived organoids (SKOs) three different hiPSCs lines. The placodes start forming around Day 65 differentiation transform into by 83, expected during development. Further investigations confirm presence several stem/progenitor populations dermal papilla in mature SKOs 120. Additionally, can develop sebaceous glands, fat, touch-receptive Merkel cells. containing pigmented mimicking cellular composition architecture second-trimester fetal tissues successfully generated Together, hairy represent a step towards understanding follicle morphogenesis, enabling used reconstructive surgeries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids

Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC)-derived intestinal organoids involving four methodological advances. (1) ...

متن کامل

Directed differentiation protocols for successful human intestinal organoids derived from multiple induced pluripotent stem cell lines

Background: Relatively little has been reported comparing the ability of different induced pluripotent stem cells (iPSCs) and protocols to derive human intestinal organoids (HIO), although there is potential to supply HIO for translational research and regenerative medicine. In view of the time and effort required to differentiate HIO, protocols for differentiation were compared and five iPSC l...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Investigative Dermatology

سال: 2023

ISSN: ['1523-1747', '0022-202X']

DOI: https://doi.org/10.1016/j.jid.2023.03.1455